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Fluid lines often play a major role in the dynamics of hydraulic control
and other systems. The hydraulic line between two cross sections is charac-
terized by a four terminal network with pressure and rate of flow the inter-
acting variables. Use of this network leads to transcendental transfer

j' functions that are not suited to the computation of system transients. The
standard technique of power series expansions fails in that this yields in-
stability in most applications where this instability does not actually occur.

. These difficulties are overcome by the use of infinite products, Only.a few -
factors of these products ére needed to cowspute transients to engineering
precision. In contrast to the classical lunped constant approach to distrib-
uted systems the accuracy of the approximation can be seen from the factors
directly. The technique applies to clectrical transmission lines as well as
hydraulic. By this method one can smooth transient responses to step changes
arising in water hammer studies., GCood agreement has been obtained between

theory and experiment, RoTHo L
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INTRODUCTICN

High power and fast resronse hydraulic systems are recuired for many
missile, aircraft and other applicetions. In the analysis and synthesis of
such systems the fluid lines coupling the various components must be consid-
ered. The lumped constant approach is often emploved, wrere 9 or 10 lumps
per wavelengt' is used as a rule of thumb (1)1. This avproschk is limited
since infinitely many degrees of freedcem are sctually irvolved. ‘#here feasi-
ble the distributed parareter arnroach is to be preferred. The second order
transfer matrix ecuation of electrical transmlss on 1ine treorv is used here
to relate preszurcs and flows &t two cross sections of a hydraulic line. The
matrix ecouation describes 2 four terminal netwcrk, and agrees well with fre-
ouency respcnse exneriments for large and small nipes.

With the aid of boundery conditicns one can often obtain transfer func-
ticns relating two of the four variables associated with two cross sections
of a line. This is true, for example, if there is a fixed crifice at one of
the sections, or there is a large reservoir at one secticn and a valve at
the other discharging to atmosphere; or there might be a tank ahead cf the
valve. The transfer functions are transcendental in the Laplace variable s.
It is convenient to employ these functirns tc comrute frecuency resrcnse but
serious mathematical difficulties are encountered when they are used to cal-
culate transiént respcnse. The standard techniaue of expanding the functicns
in power series yvields characteristic ecuations with negative coefficients
implving system instability.wh ere it does not actually occur. To overcome

this difficulty the transfer functicns zre written here as auotients of in-

i

1 Numbers in parentheses refer to tre bibliogravhy near the end of the raper,
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finite products of factors linear in s, In practige cne need keen cnly a

few of the factors. A majior adventage of this aprroach over the standard

lumped constant technioue is th:t cne can see the accuracy of the arproxi-

mation directly from the factors, The inclusirn of more t:rms to aporoximate

the transfer functions to greater bandwidth does not reauire solving succes-

sively higher degree 2lgetraic ecuations. The infinite rroduct an-reach

ap lies to electric as well as hydraulic lines,

G(s)

G, (s)
Go(s)
G4(s)
Gyi(s)

h(x,t)

H(x,s)

Notation

Speed of sound in line ft/sec

Cross secticnal area ft2

Orifice area ft2

Constant in characteristic ecuation

Ccnstant of integraticn, i =1, 2

Modulus of elasticity of pipe

Wall thickness of pipe

Acceleration of gravity ft/sec2

Transfer matrix

Normalized transfer functicn tetween head and flow at section 1
Transfer function between heads at secticn 2 and sectirn 1
Transfer function betwcen flows at secticn 2 2nd sectirn 1
The ith root factor approximeticn to Gy(s)

Pres:ure head deviation ft

Pressure head deviation in chimber

Laplace transform of h(x,t)



o

-4 -

Laplace transform of h(x,t) at section i
‘T

Bulk Modulus of fluld

Pipe friction coefficient

Reci procal of slone of prescure versus flow rurve 2t 2verage
flow

Distance betweer sections 1 anc¢ 2, ft

Flow increment ft°/sec

Flow rate deviation ftB/Sec

Laplace transform of ai (t)

Laplace trensform of A u(x,t)

Pipe inner radius

Lanlace vrriable, transformaticn with resvect to time
Unit step functicn

Time, sec

L/a, sec

Velocity of fluid in pire, ceviaticn, ft/sec
Laplace transform of u(x,t)

Column vector with elements Ci(s) and Hi(s)
Axial pipe coordinate, ft

Real part of roct of characteristic eruaticn
Variable in characteristic eouat'on

a/g A, sec/ft?

-1
deight density of fluid divided by ecuivalent bulk mcdulus, ft

vf s< + gKes

Damping factor
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/7 -~ Viscosity of fluid, cp
9]

- Frecuency, radians/sec

FUNLA D T.J. LQUATIONS

It is assumed in this analrsis trat the nydraulic line is a straight
horiuzontal rire of ¢ nstant circular cross section, At eact crowus secticn
average pnressure head, velocity and fluid density are employed. Friction
is first neglected. The coordinate of dirtance alorg th2 pipe and time ~re
dencted by x and t respectively, The deviations in aver»ge velccity ~nd
pressure head at a cross sectirn with coordinate x for tre time t are given
b u(x,t) and h(x,t)‘rGSpectively. Letting /p desipgnate the fluid density,
g the acceleraticn of grevity, K the bulk modulus cf elasticity of the pire
material, f the pipe wall thicknes: and r the inner nipe radius, the well-

known enustions of flow are (1)

2 u(x,t) Ihix,t)
u{x i -a(—-—i-—- [l]
2 x 7 4
du(x,t) Jhix,t)
= -e [2]
ot Ix
where
1 2r
Y A PR

The speed a of sound in the pire is given by
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Let U(x,s) and H(x,s) be the Lavlace transforms of u(x,t) and h(x,t) respec-
tively where s is the Laplace varjable. Let g(x,t) be the average flow r-te

deviaticn at & pipe secticn of zrea A, whence
a(x,t) = A u(x,t) [4]

Let O(x,s) te the Lapiace transfcrm of o(x,t). Let secticns 1 and 2 desig-
nate the cross sections x = O and x = L of the pipe. See Figure 1. The

variables Hi(s)’ Qi(s) for 1 =1, 2 are cefined by

Hl(s) = H(0,s)
Hz(s) = H(L,S)
A [s]
Q(s) = «(o,s)
Gyls) = QlLys)

The line impedance Z° and time constant Ty are given by

e [¢]

Tre initial conditions u(x,0*) = h(x,0') = O for flow rate and pressure
head deviaticns at t = 0" are sssumed to hold. The solution of zauaticns

[l] and [2] is now given by the matrix eouation

G(s) vy = Vy [7]
where
cosh Tes - sinh Tgs

-2, sinh Tes cosh Tgs
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EXOR
v, - l‘

L HI\S)J

" Q,(s) |
v, = 2°°

LHZ(S).

See the block diagram of Figure 2 where 2: is a summer.
Eaquation ['7] aprlies if the pipe is not straipht but has no sharp

corners,

T.ST3

The validity of Louation ['7! was verified for larye lines by freauency
response runs of John Danzlson &nd hufus Oldenburger (8) at the Apalachia
power house of the Tennessee Valley Authority. They oscillnted the gates of
a 53,500 horsepower hydraulic turbine and recorded “ydraulic among other
variables. This system involved an 8 mile 1# foot diameter tunnel, a dif-
ferential surge tank, and two 600 foot penstocks, 11 feet in diameter. Ex-
cellent agreement b-tween theory and practice was obtained over the freguency
range of % cycle per hour to 2 cps. Mr. J. D. Regietz at the Lewis Center of
the National Aeronautics and Space Administrstion made fre~uency response
runs on 8 1 inch diameter stainless steel pipe (3). The distance between the
cross secticns 1 and 2 of this pipe was 68 feet. Wall thickness was 1/16
in. Good agreement was ottained for 0.5 cps to 90 cps. ‘he fluid was Jr-L
jet fuel at 50 psi gauge, 250 C., average flow rate of 37 inB/sec, and Reynolds
number about 1,000, The srea of a valve near section 1 was varied, The fluid
discharged to atmosphere at sectiocn 2. Prescures and flow rates at sectirns

1 and 2 were recorded. Runs on a 3 inch diemeter line at the futomatic Control
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Center of Purdue University have alsc been successful,

The tests menti-ned aiove indicate that t'e basic w-ter hammer cruaticns
[1] and [2‘ hold, friction effects 3re lergely necligibie (especially st high
frcquencies), and longitudinal pipe vibraticns are small compared to the phe-

nomena describrd by Enuation['7].

LINE DISCUARGING THROUGY A FTJLD OFLTIFICE

It is supposed that there is a fixed orifice at secti-n 2 of Figure 1.
This is the ca e of Figure 3 where tre volume of the ¢t amber C 2t secticn 2
is zero and the ovening y(t) of the velve is mnstant. No restrictions are
placed on the nyysicai configurzti n to the left of cecticn 1. Thus this is
the case of a line discharging through an orifice. It is assumed that the
following relation holds at section 2 for 2 constant K, dependent on the

orifice characteristics:?

a(L,t) = K, b(L,t) [e]

Hence
G,(3) = K, Hyls) (5]

Eouation [8] holds for an arbitrary orifice and small changes in pressure
and flow about a strady onerzting point. By Lruations [7] and [9] line trans-

fer functions Gy(s), Gp(s) and GB(S) are obtained, where

Hy(s) +

1 cosh T.s + K.Z_ sinh Tgs

Gy(s) = Ko - < ;° [10]
Ql(s) cosh Tes ? wsme sinh Tes

KoZo

4
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’ H,(s) 1
2
oate) - [u]
Hl(s.) cosh Tgs *+ KoZosinh Tes
NED 1
2
G3(s) = - - - (22
Q(s) rcsh Tg8 *+ === sinh Tegs

KoZo

With 8 = @ for J = vY-1 Eoustion [lO] yields the ncrmalized line impedance
Gy(Jew ). To verify L‘ouation{'l] J. D. Regetz mace theorctical ind experi-
mental plots of t-e magnitude and phase of t}is transfer functicn versus fre-

guency.

Lilk JITH @NST/NT TR S Ul AT Che IND

Consider the cenfiguration of Figure 3 w ere t'ere is a chamber C at
section 2 of the line., The cramber cressure head deviation from eouilibrivm
is denoted by hT' The fluid discharyes to atmosphere from the c' amber C
through a valve, The deviatio: 3n ire efrective orifice area of the valve
is taken to be Ay (t ) for 2 constant Ay and valve stroke deviaticn y(t).

Now

hy = h(L,t) [13]

For constunts ¢, and ¢, depenaing cn the craracteristics of the valve, =nd a
constant 3 derending on the bulk modulus of the fluid and chamber c*arscter-

{stics one has

an(L,t)

g(L,t) = cly(t)*czh(L,t) + c3 [lh]

dt

q



B

- 10 -

Qz(s) _- 01 Y(S) + C2 H2(S) + 03 S H2(S)

where Y(s) is the Laplace transform of y(t).

(5]

Tt is assumed that trere is a sonrce of constant presiure at section 1,

as when there is a lerpe reservolr at this cecticn, or accumulator suprlying

fluid, or a pumn with a relief valve. Now
h(o,t) = O

whence
Hl(s) = 0
By Eauaticns [ 7] and [17]

QZ(S) = Ql(s) cosh Tgs
Hz(s) - - Zocl(s) sinh Tes

Lauations [15], [18] and [191 imply that

Qz(s) cosh Tes
Y(s) cosh Tgs Zo(cz + ch) sinh T.s
Hz(s) sinh Tes
—_— = =L
Y(s) cosh Tgs * Zo(cp + cqs) sinh Tes

(2]

(7]

[12]

[19]

(20]

[2]

The case of a @ nstant pressure source at section 1 and a valveat sec-

tion 2 discharging to atmosrhere occurs when tre volume of chamber C 1

w .ence couations [20] 1nd [21] arply with cq = 0.

s zero,
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FRICTTCN

Linear pipe friction may be included by using

Julx,t) Jhix,t)
— = - g| = + K ulx,t) [22]
ot Jt

in place of kcuastion |2 wrere K. is a friction cconstant. rousticn | 22
p : ’

h g
proved adequate to describe flow in % inch diameter lines. Let B (s) be

defined by

/3(s) = /82 v+ g Kes [23]
With the initial ccnditions

u(x,0*) = h(x,0*) = 0,

we have

Gﬁ(s) LA A [QL]
where 1 o

cosh Te /3(s) -"'z"o /3(s) ainh Te /3(s)

G (s) =
ﬁ - Zo..é;(_s.l sinh Teﬁ(s) cosh Teﬁ(s)
8

With the fixed orifice =5 the boundary conditicn at secticn 2, the ratic of

pressure head to flow deviations at secticn 1 is given 'ty

/3(s)
H, (s) 1 cosh T,/3(s) *+ KZ, =77 sinh T /3 (s) (]
Qy(s) osh T (s)*_i.. 8  sinph T (s)
1(s Ko cos eﬁ v Z(_sj nh Tg ﬁ s

For s numerically large ﬁ(s) may be rerl ced by s whence truation [25]
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reduces to Ecuatioen [lO]. Since for freguency resprnse s = j it follows

trat friction effects diminish as the freguency increases, and are nerligible

at high freruencies.

For the tests cf J. D. Hegetz

7 = 28,700 sec/ft2 K 5,13 x 1072 ft2/sec

° o

T = 0,017¢ sec K¢ ©.026L sec/ft

e

The differences in magnitude and ~rase angle for the input line ired:nces
{Hl(j w)/ jw ) } yiven by Rruaticns [l()] and [251 were lecs than

4% #t 1 cps and less than 1% at 5 cps.

PERFECT TRANSMISSION

For the test: of J. L. hegetz

KZ, = 1.5 [26]

From touation [10] the magnitude ratic of pressure head devi-t on to flow rote

deviation at section 1 normelly varies witn t e frecuency. 1f, however,
Kz, = 1 [~7]
the line transfer functions Gl(s), Go(s) and G3(s) e come
Gy(s) = 1, Gls) = G3lc) = e-Tes [2¢]

w¥here Condition [?,7] is satisfied, t e analysls of the line is simple since
pressure and flow rate deviations are proprerticnal and in ohase with each

otrer at eacr cross section of the line. The prorortirn is irdependent of
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frequency. Pressure and flow disturtences src prepacated along tre line as
jure delays with the deley time T, between secticns 1 and 2. ire authors feel

t-at tris phenomencn may have worthwhi'e pr.ctical applicationc.

ROCT 1V o7CH AYPICY" T UL HS

The transfer functions in ronsticns [10] - [12], [20], [211 are all

prorortional to cuotiert: of trenscencertal funect'vns of the form F(z), where
F(z) = coshz + PR sinh z [29]

and z = T,s. Here Bis a constant or functien of s, lhe .ame i{s true of
the transfer functions sric’rg from zenation Eﬂ;] for the cate of Tine
friction, excert that z is 2 mere com. licated function of s. Cevire mithe-
motiecsl difficulties srise w'en the tranicendental functiins are emplcyed
cir-ctly to comrute cystem resyonse to step :nd other  isturbances. Jhen
F(z), 7 = Tes, is the ceneminot:pr of such a transfer functicn tre technioue
of expanding F(z) into a vowsr serie: in z, and keering lover order terms tco
cbtain rati-nal a:jroxim;ti ns to the transfer funct (ns fzils, Thus, keep~

ing terms to the fifth degree yields the zoprexim-tion F5(z), yhere

Fs(c) = 1 « Bz + + + + [20]
2! 3! L} S5e
Fer B # O the functiocn FS(Z) has a zero in the right half plene. It follows
that fiftk and higher degree zrproximaticns to F(2) yield instability where
it does not occur physicilly. To aveid this cifficulty the auth-rs exrand

F(z) into an infinite product instc:d.
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Let x and y be the real and imaginary parts cf z, so that z = x + jy.

Writing cosh z and sinh 2z as

e + e % e2 - e~2
cosh z = ———————— , sinh z & —————
2 2
the equaticn
cosh z + Bsinh 2z = O [31]
be comes
5 B-1
eX cos 2y + e?X sin 2y = [32]
B+1
If B is real Louaticn [32] glves
B-1
e’X cos 2y = [33]
B+1
er ein?y = O [3&]

Solving Lmations [33] znd [3&] the rects of lourticn [31] zre fond to

be

B-1 2n + 1

z = b4 A B <1
B+1 2

o]

B-1

z = +dn 2in B>1
B+1

For B = 1 there are nc bounded roots of houation [,‘;l].
Introduce xp where

B-1

Xp 3} #n
B +1
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From the roots of kaquation [31] the functi:n F(z) can bte factored into an

infinite produce, as follows:

QXBZ - z2
cosh z + Bsinhz = 1 B <£1 [36]

- x% “(72*1)2 ?r?_

n=0 ad
z 2Xpz - 22
cosh z + B sinh 2 = 1l - — l-———— B~>1 [37]
xB XB + n< I
n=1

A complex rlane plot of the rocts of Louaution [31] is shown in Figure L. A

plot of Xg versus B is given in Figure 5.
The transfer functions Gy(<), Go(s), Gj(s), @ (s) / ¥(s) and Hy(s) /

Y(s) for the cases of an orifice or valve at secticn 2 can be expressed as

infinite prcducts bty louaticns [36] and [37]. The root factor method is

understcod to be the rrececure of finding the zeros cf cosh z * B sinh =z

and expressing this functicn as a product of corresronding fzctors. The

transfer function Gl(s) will te used to demonstr.te the root fzctor method.
/ Let K 7, = 1.56 ns for the Kegetz experiments. The functi n Gy(s) is

now given by

cosh Tgs + 1.56 sinh Tes

(3]

Gy(s) =
cosh Tes *+ 0.642 sinh Tes
The numerator of Gy(s) is given hy the right side of Egquatien [37] with
z = Tgs and B = 1.56, 2nd the denominator by the right sice of Eouaton [36]

with z = Tgs and B = 0.642, It follows that
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[ -]
TeS -I— 2ApTes - (Tel)z
e ;; =1 H Xp * ° 772
Gy(s) = - 2 [39]
Tl" [ 2XpTes - (Tqs)
1- n+ly) £
_ n=0 x: +( ) 71‘2]

In the Regetz experiments T = 0.0176.

L

2

XB = « 0,763

The function Gy(s) is now

[4d]

where

¥ Foe

N 28
3

42,4 radians/sec

56.8 V' (0.763)2

s6.2 V (0.763)2

/

(07637
(0.763)° + (=2 z°

(0.763)2
(07632 + n2
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For O to 9C cps the function Gy(jw) is approximated within 1 DB in
magnitude and 5° in angle by taking n = O to 5 in Ecuation [LO] , by letting
s = jw, and neglecting all other terms in the infinite product. The approx-
imation obtained by dropping the factors for n > m will be denoted by Gy,(J w ).
In Figures 6a and b are shown the magnitude ratio and phase curves for the
precise transfer function Gl(j w ) and the approximation Gls(j W),

Dropping the n 2 2 factors in Formila [LO] yields Gy1(s) where Gyy(s)
is a cubic in s divided by a quartic. There i1s excellent agreement between
Gl(j w ) and Gn(j 6> ) from zero to 50 cps. For the sake of brevity the fre-
quency response plots are omitted. 7

Dropping the n & 1 factors in Formla [l.O], there results

- ' DA
f0l8) T (57;-:-3) ‘ (;;_3.) 2 (2]

In Figures 7a and 7b are plotted the frequency response curves for Gl(j w)

and G1o(J & ). Clearly, Gy(J «) is a good approximation to G,(J @ ) for

O to 15 cps.

Thus the infinite products in Equation [LO] converge rapidly. The
reot factor method yields accurate rationsl approximations to Gy(s). The
bandwidth of the other components in a system with hydraulic lines determines
the largest value of (J; to include in the approximations. The largest value
of the line frequency constant @ /n should be about 1.5 times the bandwidth
of the other transfer functions in the loop.

The numeratcr of the fraction on the right in Formula [20] for Qo(s) /

Y(s) is the single term cosh Tes. Since Formula [31] holds when B = O there
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is no difficlty. On the other hand, the mmerator sinh T,s of Hz(s) /

Y(s) in Equation [21] corresponds to B = 0o where Equation [31] breaks

down. To avoid this difficulty let

sinh Tes
= 1
Taa =0
The Ecuation
sinh Te’ -0
s
has the roots

T, = *3snX, nto

which follows from Equation [35] when B—» 0o, Thus one may use

[ -]
Ti 32
inh T = T 1 ¢+
8 o® e8 nzgrz
n=1l

Tn the denominators of Formulas [20] and [21]

B = 2, (cz + c3s)

[+2]

[43]

[+5]

In the chamber and valve case B is not a constant. It is a simple matter to

solve Equation [31] with z = Tes for given numerical values of Z,, ¢2 and

C3e Thus if

T, = 0.0176, Z = 28,700, c; = 2.72 x 1075,

e
c3 = 6.98x10°6 T,

]
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the roots of Equation [31] are

. = - 0,685 * 1,223, -0.235 I 6.8,

- 00“&5 : 9.82 J, - 0.095 : 12.0 j, e« o o

whence
cq 22 + 1,372
cosh 2 *+ Z, (ep ¢ —~3) sinh z = 1 ¢+
T, 1.97
z2 + 0.47¢ 22 + 0.292 22 + 0.192
x 1 ¢ — 1l ¢ ——————— l ¢+ o o
.65 97 166

(]

Similarly more complicated functions B of s my be treated.
TRANSIENT RESPCNSE

The pressure head transient hl(t) at section 1 for a step change qgg
in flow rate at section 1l will be obtained for the case of an orifice at

section 2. By Equation [10] the ratio Hl(s) / Ql(s) of the Laplace trans-

forms of pressure head and flow rate at x = O satisfies

H,(s) 1
1'° - — Gl(s) [LB]
Qj(s) Ko

The step change q, in flow rate corresponds to

Qls) - —

)

It follows that



" 1 - Kozo .-2‘1’.5
0 2 1 *+ KoZo
Hye) = —= [+9]
8 1L KoZo - 1 ,-2Tes
KoZo * 1
Division ylelds
0 -2nTes
. [KoZe =1 ) e €
Hy(s) = aoZ Z (-1)" gn ( 2 ) [50]
n=0 KoZo * 1 s :
where
€ 1 n=0
n 2 n¥fo

Taking the inverse Laplace transform the precise response is found to be

Koo - 1
KoZo * 1

e n
hy(t) = aolo Z_:o -1 €, ( ) 8(t - 247,) [ﬂ]
n

where S(t) is the unit step function given by

0 t4£ 0
s(t) =
1l t >0
let hlo(t.) denote the approximate response at section 1 computed by
using Gjo(s) of Equation [hl] in place of Gy(s). The corresponding ap-

proximate Laplace transform Hyo(s) is then given by
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1e—
h3.2
fyols) = =2 ) [52]

sk s 8
° 1 +0.87 ) + (—-———)
99.3 99.3

whence
q
holT) = —— | 1- 61527 (2.28) cos (3.157 +1.12) [53]
K. ‘
where
t
T - —
2T

Curves of hj(t) and hlo(t) versus mltiples of T, are plotted in Figure
8. The use of Glo(s) in place of G,(s) ylelds a good fit to the actual
transient (marked "theoretical"), and is to be preferred to it in that the
hlo(t) curve is a smoothed version of the hl(t) curve with the sharp corners
removed. The smoothed solution hlo(t) is easier to use in analysis and syn-
thesis,

The root factor method is valid for the computation of transients for
systems with boundary conditions other than those treated in this paper. It
can be applied with equal facility to the transfer functions of Paynter and

Ezekial (6), ZWeig (7) and others where a linear boundary condition is used.
OPERATI ONS

Let
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By définit.iqn
£t +Te) + f(t -T
(cosh T,D) f(t) = ( o) ( o) [51.]
2
£(t +Tg) - f(t - Te)
(sinh T,D) £(t) = 2 - ° [55]

The partial differential Ecuations [1] and [2] may be replaced by the

ordinary differential ecuations
1
a(L,t) = (cosh T,D) q(0,t) = —— (sinh TeD) h(O,t) [5¢]
h(L,t) = - Z, (sinh T,D) q(0,t) + (cosh T¢D) h(O,t) [57]

relating sections 1 and 2. Ecuation [AB] may be taken as

1l cosh TeD + KoZg sinh TeD

h(0,t) = . a(o,t) [se]
K, sosh TgD ¢ 'Kfz., einh TeD
By Eqution [40], dropping the n 21 temms,
D
1l +
(o) = — . (0,t) [
hA O’t = ’ 2 0, o’t 59
K, % 20 D
1+2——D +—
@Ho W

The sigple rstional D-operator in Equation [59] suffices for first approx-
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imation studies., The operators GlO(D) or Gll(D) are adequate unless the

system variables change rapidly.

1.

2.

3.

L

5
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ADDENTUM

The transfer matrix of a fluid line which appliss when viscous effects
are significant and may not be accounted for by a linear frictlon term inclnded

in the momentum equation of water hammer is given below.

cosh M(s) --Z%;)' sinh M(s)
G (s) = ()
-2Z(s) sinh M(s) cosh M(s)
where
N(s) = :NLs

Us) = BN
3
“JZ(JE r,)

Jo(J 3- ro)

N(s) =

vhere o is the density of the fluid,r, is the inner radins of the tube and
Ji(2z) 1s the Bessel function of order i and argument 3.

The root factor method for representing the transcendental expressions
in Equation (A) by rational functions may be extended to this and other transfer
matrices. The expansion is applied to the transfer matrix directly so viscous
effects are included, It is also applicable for an arbitrary terminal condition.

The extension follows from the infinite product expansions for the hyperbolic

25
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sine and cosine and Bessel functions. A brief summary of the extension 1is

given below. For def.ails of the method the reader is referred to a study of

one of the authors [18].
The infinite product expansions for the sine and cosine hyperbolic and

Bessel functions are given by [19]

cosh M(s) = :‘IE 1+ [C&T]:_ZS%;T/_!‘:]
sinh u(s) = M(s) :E;(l . a%g;)
o (s) - -((—\)%LE_)%T n*1l (1 N z2/“\) a)

where J\,(a‘,,n) O,n=1,2, ..., ... and T (y ¢+ 1) is the ordinary

gamma function, With the above substitutions G(s) becomes

i 1
JL [1 . &%&3%52;27:] N, (s) ;ﬂ—( '::(:) )

G(s) =

T 2(s) u2(s)
o | [1 . sz.] :[fo(l A /A)

where



8 T2e 1+*ks a2

k n=1 l ’kﬂ/“
2,n

ne) - -
0

] . 2

Ny(s) = _8Ta %o T 1+k /%o

r2p/u

x
L]

The Bessel function zeros a, , monatonically increase with n, and
&0,n+1 approaches o3 n rapidly with increasing n. Trms, rational a pproxi-

mations to G(s) may be readily made by taking only a few terms of the infinite

products appearing in G(s). A good approximaticn te the infinite prodact appear-

ing in N,(s) and ¥%(s) for |xs| < 400 is given by

2
-‘“— 1 +ks/aon|y (1*k 8/5.78) (1 * k 8/56.6)
n=1 1 +k S/az 1 +k 3/‘00-9

2,n
A more accurate representation may be obtained by considering a higher order
approximation, but the accuracy obtained with the above expression should
suffice for most studies.
Using the approximation above and keeping only one or two terms of the
. infinite product expansions of the hyperbolic eine and cosine functions in

G(s), a rational model for the dynamics of a transmission line with *losses"
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and arbitrary boundary or terminal conditions results. By keeping only the
first two terms of the infinite products, which yields a model of order six in
s, the resulting approximation has been foand to give good results for the
transient response of a hydraulic line when the only dissipation of energy was
due to fluid viscosity.

The infinite product expansion also may be applied to the transfer matrix
Gﬂ(a) of Eqation (24) by expressing the hyperbolic sine and cosine functions
as infinite products. The transfer matrix G A (s) results when a linear friction
term is added to the momentum equation of water hammer.

In conclusion the infinite product approach may be used to obtain a
rational model for a transmission line with "losses" and arbitrery boundary
or terminal conditions. The model is readily derived from the transcendental
transfer matrix characterizing the line. The spproximation resulting from
taking only one or two terms of the infinite products is more accurate than a

Taylor series expansion. The model is also relatively simple to obtain.
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